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Abstract. A series of energy-minimized relativistic
Gaussian basis sets for the elements with atomic
numbers 19-118 is presented. The basis sets have been
derived at the self-consistent field level as weighted
average energies of the respective electronic configura-
tions. A spherical Gaussian charge distribution has been
used to model the nucleus. The basis sets are constructed
as interleaving dual family sets with shared exponents
within each family. The quality of the basis sets is better
than double zeta.
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1 Introduction

For some time there has been growing awareness of the
importance of relativistic effects on bonding in molecules
as well as other molecular properties. This has spurred
efforts to extend the methods of computational quantum
chemistry to provide a quantitative description of
relativistic effects in molecules. The development of such
relativistic methods has followed several different
theoretical models, among these the use of relativistic
effective core potentials, Foldy-Wouthuysen or Doug-
las—Kroll methods, perturbation theory, and four-com-
ponent methods. The most demanding of these in terms
of computational effort are the four-component methods,
but it is also these approaches which involve a minimum
of approximations to the relativistic theory developed by
Dirac. Thus, there has for some time been a steady
development of computer programs for four-component
relativistic calculations on general polyatomic systems.
Like most nonrelativistic computer programs for
general polyatomic molecules, these molecular four-
component programs are based on an analytic approx-
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imation using expansion of the wavefunction in basis
sets of Gaussian functions. One obstacle to the appli-
cation of four-component methods has been the rather
limited availability of basis sets for these types of cal-
culations. Various basis sets have appeared, including
the universal Gaussian basis (UGB) sets [1, 2, 3], least-
squares fitting to a numerical wavefunction [4], even-
tempered expansions [5, 6], modified nonrelativistic sets
[7, 8], and energy-minimized sets [9, 1]. Most of these sets
are either derived for special applications to specific el-
ements or at most cover only a limited range of elements.
An exception is the UGB, but while this set yields results
of high accuracy in atomic calculations, it appears rather
large for use in routine calculations on molecules.

The purpose of the present work is to provide basis
sets for routine work in four-component calculations on
molecules. The goal has been to derive a series of basis
sets spanning a wide range of elements with reasonably
uniform quality and at the same time of a size compat-
ible with use on present-day average-sized computa-
tional resources. The method and the strategies chosen
in deriving these basis sets are described later. This
is followed by a section containing comments on the
results and a discussion of some features of the basis
sets and on the procedure used.

2 Method

The basic idea behind the development of the present
basis sets is simple. To describe the radial part of an
atomic spinor we seek a set of Gaussian functions of the

type
AylZe (1)

where the exponents, {, are chosen such that the basis
set provides a best possible description of the atom,
compatible with its use in molecular calculations. As a
quality criterion the minimization of the total atomic
energy calculated with the basis set is used, in accor-
dance with the variational principle. For this purpose a
modified version of the GRASP [11] program package



has been interfaced to optimization routines that search
for a minimum on the energy hypersurface spanned by
the exponents for the Gaussian functions of the basis set.
The method and the technical implementation has been
described in previous articles [9, 10].

In deriving a basis set along these lines, a number of
strategic decisions must be made. A general discussion of
the possible choices is presented in Ref. [9]; only those
pertaining to the present work will be considered here.
One such decision is how to group the functions in
the basis set. For nonrelativistic basis sets, the functions
are normally grouped according to angular momentum
quantum number, ¢, into ¢-based sets. The symmetry of
a relativistic atomic spinor is characterized by the value
of the quantum number x; thus, to provide maximum
variational freedom, one might want to optimize subsets
for each value of k to provide a k-based set. The use of
k-based sets would unfortunately lead to basis sets that
are too large for most practical applications and is,
therefore, not a viable option here. Another possibility is
to group the functions into j-based sets, where the sub-
sets have the same value of the quantum number j. There
are a number of good arguments for using j-based sets,
but in order to exploit these efficiently, the relativistic
molecular program must use two-spinor based algo-
rithms, as opposed to algorithms based on the scalar
components of the four-spinor. Not all programs avail-
able today have this possibility. Furthermore, for the
lighter elements it is clearly sensible to have the same
functions for, say, pi» and ps;. For these reasons, it has
been decided to work with ¢-based sets. This also has the
advantage that it is easy to make the connection to the
nonrelativistic case and the sets may be modified for use
in more approximate schemes if so desired.

The basis sets for the large component and the small
component of a four-spinor must be related by the re-
quirement of kinetic balance, approximately expressed as

{v’} 2 {(e-Py'}, (2)
In practice this is fulfilled by letting the small-component
basis consist of the derivatives of the basis functions of
the large components. Thus, in /-based sets, the large-
component s functions generate small-component p
functions, large p functions generate small s functions
and small d functions, large d functions generate small
p functions and d functions etc. Therefore, the number
of small-component functions may become rather large
owing to the kinetic balance requirement. One remedy
for this is to use family sets, where large-component
basis functions that generate the same type of small
components also having coinciding exponents. In this
scheme, the exponents for the d functions would be a
subset of the s function exponents and any possible g
functions would also have exponents from this set. The
other (interleaving) family would consist of p, f, and h
functions. Sets constructed in this manner have previ-
ously been given the name dual family sets, and the
present series of basis sets have been chosen on this
model. In practice it turns out that the internal
restrictions on a dual family set require that more basis
functions be used for the larger ¢ values to reach the
same atomic energy as a nonfamily (or bachelor) set, and
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this offsets some of the savings in the small-component
function space. However, the dual family set has the
additional advantage of reducing the danger of linear
dependencies in the small-component space, something
which may be a problem for large bachelor sets. It
should be recalled that for Cartesian Gaussian functions
the “extra functions” for the higher /-values also have
to be included in the small-component space, i.e. the
3s function generated by Cartesian d functions and
the 4p functions form the f functions; this increases the
possibilities for linear dependencies. The increased
possibilities for linear basis set dependencies are due to
the approximate form of the kinetic balance used in
four-component molecular calculations and the use of
{-based sets. Thus, the small components for s;, and
ds;, both appear as p functions rather than p;, and
P32, respectively.

The size of basis sets chosen arises as a compromise
between maximum flexibility and minimum cost. The
experience from nonrelativistic calculations is that basis
sets of at least double-zeta quality (i.e. at least two
primitive functions describing the valence spinors) are
required to provide reasonable results at the Hartree—
Fock level and that sets beyond this, augmented by
various polarization functions, are required for more
accurate work. The present sets have been chosen to be
of double-zeta to triple-zeta quality. For relativistic basis
sets some special considerations apply. One such special
demand arises out of the spin-orbit splitting. With /-
based sets, the same exponents have to describe com-
ponents of both j values. For light elements, this may not
be critical but for heavy atoms this may create more of a
strain, and in the worst case one of the two j components
may end up with a poorer description.

Because the relativistic energy lowering is greatest for
the s;» and p;,, spinors, an energy-minimization pro-
cedure is likely to overemphasize the inner regions of the
s spinors. Therefore trying to achieve a natural triple-
zeta distribution for s spinors may require an inordi-
nately large number of basis functions in regions that are
energetically important, but less essential for a descrip-
tion of the valence region, which decides much of the
chemistry. The same may apply to p spinors for heavier
elements. This may have consequences for the energy
balance of the basis set. A basis set is said to be energy-
balanced if the addition of one more function, followed
by reoptimization, produces the same energy improve-
ment for all £ values. With the large energy contributions
from the low-¢ symmetries, it may be permissible to
forego some of the energy balance for these.

The use of a finite nuclear size is important for rela-
tivistic basis sets. For a point nucleus, there will be
spinors that are singular at the nucleus, and the mini-
mization process tries to model this singularity at great
expense of a number of high exponent basis functions.
The use of a finite nuclear model removes the singularity
and also reduces some of the energy contribution to the
spinors with the greatest penetration to the nuclear re-
gion. For these calculations we chose a Gaussian nuclear
charge distribution in accordance with the prescription
by Visscher and Dyall [12]. In this model the atomic
mass of the element determines the exponent of the
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Gaussian charge distribution. The particular isotope (or
average) mass chosen for this is not critical for the basis
set, but it does affect the value of the total energies; thus,
one should not expect to reproduce these with a different
atomic mass number.

The basis sets presented here cover the atomic num-
bers 19-118. For elements lighter than this, there is
a wide selection of nonrelativistic basis sets which may
be used in relativistic calculations with insignificant loss
of accuracy, provided proper attention is paid to the
modification of any contractions used. The basis sets
were optimized in average-level Dirac-Fock calcula-
tions, and for most cases the standard ground-state
electronic configuration was used.

3 Results

The overall features of the present series of basis sets are
presented in Table 1. A more comprehensive listing
including total energies is provided in the Appendix. The
full listing of the basis set exponents is available from the
Internet archives. This listing also contains the spinor
coefficients, which may be of use, for example, in
contracting the basis sets. In the following, we comment
briefly on some features of the various series of elements.
The general notation used for a family basis is of the
form (n, n,, ng: ms, ng: my), meaning for n, functions are
used for this value ¢, and my, is the lowest common
exponent in the family set. Thus a (25, 23, 17:8, 12:10)
set has 25 s functions, 23 p functions, 17 d functions with
the same exponents as s functions number 8 to 24
(ordered by decreasing magnitude), and 12 f functions
sharing exponents with p functions number 10 to 21.

K-Ca: (19, 14)

The concept of family sets does, of course, not apply to
these elements which only contain s and p spinors.
Although the exponents here are derived from a scaled

Table 1. Overview of basis set series. AE is the deviation from the
numerical value in mEy

Atoms Basis set AE

K-Ca (19, 14) 0.3

Sc—Zn (19, 14, 9:9) 0.9-3.0
Ga—Kr (19, 16, 9:9) 2.8-3.0
Rb-Sr (20, 16, 9:9) 3.8-3.7
Y-Cd (20, 16, 11:9) 5.3-9.7
In—Xe (20, 18, 11:9) 9.5-10.2
Cs—Ba (23, 19, 12:9) 4342
La (23, 19, 14:9) 5.1

Ce-Lu (23, 19, 14:9, 9:10) 6.1-17.9
Hf-Hg (23, 19, 14:9, 9:10) 17.3-18.8
TI-Rn (23, 21, 14:9, 9:10) 17.6-18.5
Fr-Ra (25, 21, 14:9, 9:10) 17.4-17.0
Ac (25, 21, 16:9, 9:10) 17.8

Th-Lr (25, 21, 16:9, 12:10) 19.8-34.9
Rf-112 (25, 21, 17:8, 12:10) 29.1-29.5
113-118 (25, 23, 17:8, 12:10) 20.6-16.3

Sc set, with triple-zeta s distribution, the inner functions
slide towards higher exponents, leaving a double-zeta
set. The p distribution is quadruple zeta, which is larger
than what is aimed at with these sets, but not of great
consequence, as these are really light elements in the
context of relativistic calculations, and if the relativistic
effects on these elements are of primary interest, in a
calculation, an extensive basis will be required.

Sc—Zn: (19, 14, 9:9)

For the first row of transition elements, we now obtain a
triple-zeta s distribution. The p functions still make a
quadruple-zeta set. A reasonably regular increase of the
deviation from the numerical value appears as we go
to higher atomic numbers, in agreement with what is
observed for most energy-optimized basis sets. The s* d"
configuration was used, except for Cr and Ni where the
s'd" ! configuration is preferred.

Ga-Kr: (19, 16, 9:9)

Adding two functions to the p space provides a triple-
zeta distribution. Also the s distribution is triple zeta in
the valence, but this is at some cost to the description of
the 3s spinor, which has shrunk to double zeta by the
time we get to Kr.

Rb—Sr: (20, 16, 9:9)

From here on, we settle for double-zeta s distributions
for reasons discussed in the previous section. We still
maintain a triple-zeta p distribution.

Y-Cd: (20, 16, 11:9)

The second row of transition metal elements continues
the s double-zeta and p triple-zeta distributions from Rb.
The d distribution starts out as triple zeta, but is closer
to quadruple zeta by the time we reach Cd. The s'd""!
configuration was used for Mo and Pd, otherwise s°d"
was used.

In-Xe: (20, 18, 11:9)

Here two p functions have been added. This is not
enough to support a triple-zeta p description for In and
Sn, owing to the small contribution to the total energy
from high-lying valence spinors with only one or two
electrons. From Sb onwards, the p distribution is triple
zeta.

Cs—Ba. (23,19, 12:9)

Three s functions, as well as a p and a d function, were
added. This is partly to anticipate the increased demands
on the p and d distributions as the nuclear charge



increases through the lanthanide series. The sets are
double zeta for the s functions; triple zeta for p
functions, and quadruple zeta for d functions.

La: (23,19, 14,9), Ce—Lu: (23, 19, 14.9, 9:10)

All the lanthanides were optimized for the sd'f"
configuration. For La the d distribution now becomes
triple zeta and this is maintained throughout the
lanthanides. It is noteworthy that on going from La to
Lu the difference between the finite basis total energies
and those obtained from numerical calculations increas-
es monotonically from 5 to 18 mEy. This should be
compared to the relatively stable value of this difference
from Hf to Ra.

Hf-Hg: (23, 19, 14:9, 9:10)

The same distributions apply through the third row of
transition metals as for the lanthanides. The s'd™"'
configuration was used for W and Pt, otherwise s*d" was
used. The effect of spin-orbit splitting is now clearly
manifested in the p spinors — for Hg the three p functions
with the smallest exponents have the expansion coeffi-
cients 0.35, 0.74, and 0.19 the p, spinor, and 0.16, 0.76,
and 0.30 for the ps/, spinor.

TI-Rn: (23,21, 14:9, 9:10), Fr—Ra: (25, 21, 14:9, 9:10)

Adding two more p functions is not enough to support a
triple-zeta distribution and from Tl onwards a double-
zeta p distribution is used. However, as the atomic
number increases, the weight in this double-zeta distri-
bution shifts more and more towards the largest
exponent. Thus, for Tl the 6p expansion coefficients
for the two most diffuse functions are 0.62 and 0.49 for
P12, and 0.48 and 0.65 for ps)», whereas the correspond-
ing coefficients for Ra area 0.82, 0.31 and 0.70, 0.51.
Throughout the series the outer p exponents show
approximate even-tempered behavior.

Ac: (25, 21, 16:9, 9:10), Th-Lr: (25, 21, 16:9, 12:10)

All the actinides were optimized for the s*d'f* configu-
ration. The addition of two d functions yields a
distribution somewhere between double and triple zeta.
For Ac the d function number 14 (i.e. the third most
diffuse appears with expansion coefficient 0.16 in 5ds;,
and 0.09 in 6d3/2, and with 0.18 in 5d5/2 and 0.06 in 6d5/2.
For Lr the corresponding coefficients are 0.07 in 5ds,,
and 0.20 in 6d3/2, 0.10 in 5d5/2 and 0.16 in 6d5/2. A
similar effect is seen for the f functions which start
out as a quadruple-zeta distribution for Th and end
as a quintuple-distribution for Lr, although with small
contributions from the most diffuse function. Again the
increasing difference between finite basis and numerical
calculations throughout the series is noteworthy. Re-
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ducing the number of f functions by 1 i.e. going to an
11:10 set, results in a further energy loss of 10-16 mEy.

Rf-112: (25,21, 17:8, 12:10)

For the fourth row of transition metals the electronic
configuration s*d" was used throughout. One more tight
d function was added to accommodate the increasing
number of electrons in the 6d shell, giving a triple-zeta
distribution throughout. For the transition metals the f
distribution starts out as quintuple zeta, but by the time
we get to Uub (element. 112) function number 8 (the 5th
most diffuse) is shared more or less equally between the
4f and 5f spinors.

113-118: (25, 23, 17:8, 12:10)

When the 7p spinors start filling up, the f distribution
goes to quadruple zeta with the most diffuse f function
assuming more and more a spectator role. For Uuo
(118) the double-zeta s distribution shows a shift
towards the tighter functions. The further addition of
one more s function (to a total of 26) is found to lower
the energy by approximately 10 mEy. The spin-orbit
splitting of the 7p spinors shows clearly in the expansion
coefficients for the two most diffuse functions of the
double-zeta representation: these are 0.88 and 0.21 for
the 7p;> and 0.46 and 0.75 for the 7p;,.

4 Discussion

As remarked previously, any basis set represents a
compromise between accuracy (in some sense) and cost.
The consequences of the choices made in arriving at
this compromise are not always clear. For large basis
sets, such as those considered here, the exponents can
be optimized for the separate symmetries independently.
There is only an insignificant gain in optimizing s and p
exponents simultaneously, as compared to optimizing
each set separately. On the other hand, the family
feature which couples s and d exponents as well as p and
f exponents tends to obscure the effects of changes made
to the basis. Thus, the increase in the difference between
analytical and numerical energy values as we traverse the
lanthanide and actinide series may be due to insufficient
description of the f spinors, but it could also at least
partially be due to the fact that the increased number of
electrons changes the p exponents through the family
coupling during the optimization process and that some
of the energy loss comes from this.

For relativistic basis sets, there is an added compli-
cation relating to the quality criterion used. On the basis
of the work of Talman [13], the Dirac-Hatree—Fock
energy is considered to represent a minimum in the
space of variational parameters for the positive energy
states, but a maximum in the variational space for the
negative energy states. As pointed out previously [9], the
coupling of the exponents for the large and small com-
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ponents through the kinetic balance condition provides
an implicit projection onto the positive energy states.
However, in a truncated basis set this projection will
only approximate the real energy surface spanned by the
orbital rotations, and, therefore the minimum found in
the exponent optimization may correspond to a point
below the value obtained in fully numerical Dirac—
Hartree—Fock calculations. Indeed, it may be shown
that it is possible to force the total energy obtained from
energy-minimized basis sets below that obtained in the
numerical Dirac-Hartree—Fock calculations. Thus, a
k-based (25, 25, 23, 16, 16, 11, 11) set for element 118
yields an energy 22.5 mEy below the numerical value.
This is not a collapse of the variational process in the
traditional sense (i.e. such as that observed when kinetic
balance is not obeyed or if important parts of the elec-
tron repulsion are neglected), rather it represents the
incompleteness of the basis set, and one might use the
term prolapse to describe the phenomenon. For the use
of an actual basis set, the possibility of a prolapse due to
the minimization process certainly represents no greater
problems than the energy deviation of any finite basis.
Unfortunately, the use of total energy as a quality
criterion to guide the optimization of the basis set is
no longer unambiguous.

The danger of a prolapse is one reason for being
somewhat restrictive with the size of the s and p sets.
Experience has shown that it is, in particular, for these
functions that a prolapse may be incurred. This increases
the danger that attempts at improving the valence space
through additional functions in the minimization pro-
cess may lead to an unrealistic saturation of the inner
function space. One way to avoid this is to freeze the
inner functions when those core orbitals are sufficiently
well described. This has not been done here, rather the
optimization has been carried out without constraints,
but with limited basis sets for these symmetries. These
limitations on the s and p sets may lead to skewing of the
function distribution, as indicated in some of the sets
described earlier. A strategy for improving the valence
descriptions of these sets is by adding functions to the
valence space in the actual molecular calculations to
ensure that the results are stable. Thus, it has been found
that a (23, 21, 16:8, 10:10) basis should be supplemented
with diffuse s and p functions as well as given an ex-
tended d range in order to produce stable bond lengths
for TIAt.

Energy-minimized basis sets may also suffer from
deficiencies in the region close to the nucleus. For the
case of TIF this has been discussed by Quiney et al. [3].
A series expansion of the spinors in powers or r close to
the nucleus reveals that the ratio of the zeroth order term
for the large and small component is not properly re-
produced by a (25, 24, 16:8, 10:10) basis set for T1. This
will normally not affect calculations of chemical prop-
erties, but in calculations where the property expressions
are sensitive to the quality of the small component, this
behavior may be crucial. This was the case in the work
of Quiney et al. [5], which dealt with processes of
odd symmetry with respect to space and time inversion
(PT-odd). For that particular application, a large even-
tempered (34, 34, 16, 9) basis was preferred.

In this light, it is interesting to compare the energy-
minimized sets with even-tempered sets where the ex-
ponents are chosen to form a geometric series. No such
comparison can be totally unambiguous because the
criteria chosen in developing the sets may differ. One
approach is to regard the lowest possible total atomic
energy as our criterion of quality and to investigate how
the energy from the minimized set can be reproduced
using an even-tempered set. This has been done for Kr
and Rn by fixing the range of the exponents of the even-
tempered sets to that of the minimized set (i.e. the largest
and smallest exponents are the same for the two sets)
and then investigating how many functions an even-
tempered series must contain to produce the same en-
ergy. The fact that the symmetries are independent to
a good approximation has been exploited by replacing
the minimized set by even-tempered functions for one
symmetry at a time. Thus, the exponents for p, d, and f
functions are kept at their minimized (family basis)
values, while the range of the s exponents are being
spanned by an even-tempered set. The number of func-
tions in the even-tempered set is then varied systemati-
cally until the energy is close to or lower than that of
the minimized basis. The same procedure is repeated for
the other symmetries. The results of this investigation
are presented in Table 2, where the differences between
the family basis set energy and the partial even-tempered
basis value are listed.

Table 2 shows that the largest differences occur for
the s and p orbitals; d and f sets are easily matched by
even-tempered distributions. The slow convergence in
the s basis for Rn has no practical significance, consid-
ering that the family value is 18.5 mEy above the value
from numerical calculations (see Table A3). With this

Table 2. Total atomic energies obtained by symmetrywise replace-
ment of basis functions by even-tempered sets. Orb. — number and
type of orbitals in even-tempered set, AE — energy difference in mEy
of relative minimized set

Orb. AE Orb. AE Orb. AE
Kr. Reference family set (19, 16, 11:8)
19s 47.1 16p 252 11d 0.4
20s 18.7 17p 9.1
21s 9.3 18p 2.7
22s 34 19p 0.7
23s 0.7 20p 0.1
24s -0.2
Rn. Reference family set (23, 21, 14:9, 9:10)
23s 106.8 21p 870.7 14d 12.9
24s 55.8 22p 378.1 15d 2.1
25s 214 23p 152.8 16d -0.4
26s 9.7 24p 75.0
27s 5.9 25p 27.8 9f 0.9
28s 2.9 26p 6.7 101 0.3
29s 1.5 27p 0.7
30s 1.1 28p -0.3
31s 0.8
32s 0.4
33s 0.2
34s 0.1
35s 0.0
36s -0.3




level of accuracy energy differences of 1.5 mEy are
acceptable. Thus, for Kr, where the family value is
3.0 mEy above the numerical value, it appears from
Table 2 that an even-tempered set requires four more s
functions and three more p functions than the family set,
while for Rn one would require at least five more s
functions, five p functions, and one d function; however,
these estimates do not take the family property into
account. If one wants to retain this (over the same ex-
ponent span), the requirements on the even-tempered
sets increase somewhat. Further calculations show that
we need a (24, 19, 11:13) even-tempered basis to match
the energy of the minimized (19, 16, 11:8) family set.
Similarly for Rn we need a (30, 27, 16, 15, 9, 15) even-
tempered set to match the family (23, 21, 14:9, 9:10).
Comparisons such as this should be regarded with some
caution. First of all, one may have different goals in
developing even-tempered basis sets than for energy-
optimized sets, as was the case in Ref. [5]. Secondly, the
possibility of a prolapse in energies may influence the
comparisons; this is likely to work in favor of the energy-
minimized basis, although even-tempered basis sets are
not immune to this problem either. The strong points of
the two types of basis sets are different and thus a
comparison can never be completely fair.

Despite the possible shortcomings, the present series
of basis sets should provide increased opportunities for
researchers in need of doing four component relativ-
istic calculations. The basis sets have also proven to be
useful for generating basis sets to be used with various
scalar approximations to relativistic calculations. Ulti-
mately the true merits of any basis set will only emerge
through extensive applications. These basis sets are
currently being tried in a number of calculations and
from the experiences gained it will hopefully be possi-
ble to gain further insight into the requirements for
good basis sets to be used in four-component calcula-
tions. This, together with improved algorithms for
exponent optimization, should eventually provide se-

Table Al. Total energies in Ey for K-Kr. AE is the deviation from
the numerical value in mEy

Atom Atomic Energy AE
mass no.
K 39.000 —6.015256451360 x 10° 0.3
Ca 40.000 —6.797098655636 x 10° 0.3
Sc 45.000 ~7.633778818069 x 10° 0.9
Ti 48.000 —8.528188190043 x 10° 1.0
A% 51.000 -9.481874939726 x 10° 1.2
Cr 52.000 —1.049594306272 x 10° 1.7
Mn 55.000 -1.157320376215 x 10° 1.5
Fe 56.000 -1.271390219774 x 10° 1.8
Co 59.000 -1.391999818166 x 10° 2.0
Ni 58.000 -1.519293511020 x 10° 2.9
Cu 63.000 -1.653451847858 x 10° 3.2
Zn 64.000 ~1.794610054588 x 10° 3.0
Ga 69.000 ~1.942560919754 x 10° 2.8
Ge 74.000 -2.097467572390 x 10° 2.8
As 75.000 —2.259439110959 x 10° 2.8
Se 80.000 —2.428585445554 x 10° 2.8
Br 79.000 -2.605020578042 x 10° 2.9
Kr 84.000 —2.788857635865 x 10° 3.0
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lections of basis sets which place relativistic calcula-
tions on an equal footing with non-relativistic work in
this respect.

The present basis sets are available as supplementary
electronic material in the form of downloadable ASCII
files.
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Appendix

The total energies obtained with the present series of
basis sets are listed here for the separate elements. The

Table A2. Total energies in Ey for Rb—Xe. AE is the deviation
from the numerical value in mEy

Atom Atomic Energy AE
mass no.
Rb 85.000 ~2.979801174098 x 10° 3.8
Sr 88.000 ~3.178076282939 x 10° 3.7
Y 89.000 ~3.383756531085 x 10° 5.3
Zr 90.000 -3.597077640522 x 10° 5.7
Nb 93.000 -3.818162171798 x 10° 6.1
Mo 98.000 —4.047134230960 x 10° 7.4
Tc 98.000 —4.284106409565 x 10° 7.0
Ru 102.000 -4.529206421196 x 10° 7.5
Rh 103.000 —4.782554881469 x 10° 8.0
Pd 106.000 —5.044383626721 x 10° 9.1
Ag 107.000 —5.314624678347 x 10° 9.6
Cd 114.000 -5.593309230366 x 10° 9.7
In 115.000 -5.880422174718 x 10° 9.5
Sn 120.000 -6.176118521785 x 10° 9.6
Sb 121.000 —6.480508904932 x 10° 9.8
Te 130.000 —6.793689198032 x 10° 9.9
I 127.000 ~7.115784224790 x 10° 10.0
Xe 132.000 ~7.446885328181 x 10° 10.2

Table A3. Total energies in Ey for Cs, Ba, and Hf-Rn. AE is the
deviation from the numerical value in mEy

Atom Atomic Energy AE
mass no.
Cs 133.000 ~7.786767388085 x 10° 43
Ba 138.000 -8.135640837571 x 10° 4.2
Hf 180.000 -1.508876937130 x 10* 17.3
Ta 181.000 -1.561661388950 x 10* 16.9
w 184.000 -1.615611955901 x 10* 18.3
Re 187.000 —1.670760327942 x 10* 16.8
Os 192.000 ~1.727106541071 x 10* 17.0
Ir 193.000 ~1.784677137067 x 10* 17.4
Pt 195.000 —1.843489825444 x 10* 18.9
Au 197.000 —1.903552398733 x 10* 19.4
Hg 202.000 ~1.964887737403 x 10* 18.8
Tl 205.000 —2.027483307036 x 10* 17.6
Pb 208.000 —2.091369690473 x 10* 17.4
Bi 209.000 —2.156568855177 x 10* 17.5
Po 209.000 —2.223099537520 x 10* 17.8
At 205.000 —2.290978942652 x 10* 18.2
Rn 222.000 —2.360208573761 x 10* 18.5
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Table A4. Total energies in Ey for La—Lu. AE is the deviation from
the numerical value in mEy

Table A6. Total energies in Ey for Ac—Lr. AE is the deviation from
the numerical value in mEy

Atom Atomic Energy AE Atom Atomic Energy AE
mass no. mass no.

La 139.000 —8.493640636347 x 10° 5.1 Ac 227.000 —2.576234953450 x 10* 17.8
Ce 140.000 -8.861065360862 x 10° 6.1 Th 232.000 —2.651082745494 x 10* 19.8
Pr 141.000 -9.238192797527 x 10° 6.8 Pa 231.000 —2.727435803651 x 10* 20.8
Nd 144.000 —9.625156943946 x 10° 7.5 U 238.000 ~2.805281824909 x 10* 21.7
Pm 145.000 -1.002210456018 x 10* 7.1 Np 237.000 —2.884698306169 x 10* 23.0
Sm 152.000 ~1.042915926376 x 10* 8.8 Pu 244.000 -2.965661040768 x 10* 24.4
Eu 162.000 —1.084649308114 x 10* 9.6 Am 243.000 -3.048258758961 x 10* 26.3
Gd 158.000 —1.127421980907 x 10* 10.4 Cm 247.000 —3.132472750354 x 10* 28.3
Dy 159.000 —1.171251562136 x 10* 11.2 Bk 247.000 -3.218374964495 x 10* 25.2
Tb 162.000 —1.216151122796 x 10* 12.2 Cf 251.000 -3.305960561870 x 10* 273
Ho 162.000 -1.262137551311 x 10* 13.2 Es 252.000 -3.395301230378 x 10* 28.7
Er 168.000 —1.309223099952 x 10* 14.2 Fm 257.000 -3.486393233886 x 10* 30.1
Tm 168.934 —1.357427746806 x 10* 15.4 Md 258.000 -3.579325007989 x 10* 31.6
Yb 173.040 —1.406764292033 x 10* 16.6 No 259.000 —3.674113437439 x 10* 33.2
Lu 175.000 ~1.457251561522 x 10* 17.9 Lr 260.000 -3.770801055971 x 10* 34.9

Table AS. Total energies in Ey for Fr, Ra, and Rf-118. AE is the
deviation from the numerical value in rmEy

Atom Atomic Energy AE
mass no.
Fr 223.000 —2.430817590650 x 10* 17.4
Ra 226.000 —2.502817080236 x 10* 17.0
Rf 261.000 -3.869392618306 x 10* 29.1
Db 262.000 -3.969951118221 x 10* 29.3
Sg 263.000 —4.072525040477 x 10* 29.5
Bh 262.000 —4.177189876379 x 10* 29.9
Hs 265.000 —4.283923463686 x 10* 30.0
Mt 266.000 -4.392857149454 x 10* 30.3
110 281.160 -4.503792564225 x 10* 29.6
111 283.716 -4.617206066629 x 10* 29.6
112 286.272 —4.732974568929 x 10* 29.5
113 288.828 —4.851140295249 x 10* 20.6
114 291.384 -4.971786061746 x 10* 19.4
115 293.940 -5.094989582797 x 10* 18.7
116 296.496 —5.220832498275 x 10* 18.0
117 299.052 —5.349401472542 x 10* 17.2
118 301.608 —5.480788640140 x 10* 16.3

elements are grouped according to the rows of the
periodic system, with lanthanides and actinides as
separate groups. The values listed here are those
calculated as weighted average energies from the
GRASP program. As explained previously a Gaussian

charge distribution is chosen for the finite nucleus.
In our approach the exponent of this distribution is
determined from the atomic mass number and as the
total energy depends on the mass numbers used, they
are included in tables Al, A2, A3, A4, A5, and A6.
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